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Abstract. Plane waves on symmetric spaces (SS)X ≡ SO(p, q)/SO(p)⊗ SO(q) of rankp,
p 6 q, are constructed by realization of the irreducible representations (principal series) of the
groupSO(p, q) in the space of infinitely differentiable homogeneous vector functionsF(yi) on
cones [yi , yi ] = 0, yi ∈ Yi , with values in the representation space of the stability subgroups
SO(p − i, q − i), i = 1, . . . , p. We define the conesYi = LimX(αi, . . . , αp), αi → ∞,
corresponding to the SSX related with Cartan involutive automorphismσ(g) = IgI , g ∈
SO(p, q), whereI = diag(1, . . . ,1,−1, . . . ,−1) is the metric tensor of the pseudo-Euclidean
spaceRp,q . Calculating Harish–Chandrac-functions the orthogonality, completeness conditions
and addition theorems for plane waves are derived. The integrablen-body quantum systems
related to groupsSO(p, q) are considered. The explicit expressions for the Green functions in
the case SSX of rankp = 1 and the integral representation in the general case are given.

1. Introduction

The plane waves on the Lobachevski spaceSO(1, 3)/SO(3) at first were considered and
used for Fourier analysis of the representations of the Lorentz group associated with this
space by Shapiro [1]. The connection of this approach with the horisphere transformation
(with the integral geometry) in the spaceSO(1, q)/SO(q) was presented by Gelfandet al
[2] in detail. Plane waves were used by Perelomov [3] in another aspect, which was the
construction of the coherent states.

We consider the spaces related with a Cartan involutive automorphism of the group
SO(p, q), p 6 q, namely the symmetric Riemannian and pseudo-Riemannian spaces with
rank equal top = 1, 2, . . . , X ≡ SO(p, q)/SO(p)× SO(q) andZ ≡ SO(p, q)/SO(p −
1, 1)× SO(1, q − 1), respectively.

Our aim in this paper is to generalize the Wigner theory to the case of the groups
SO(p, q) in order to construct the plane waves on SSX andZ which are eigenfunctions
of the Laplace operators on SSX andZ. We begin with consideration of the SS of rank
1: SO(p, q)/SO(p − 1, q), SO(p, q)/SO(p, q − 1), p 6 q. The plane waves on these
SS are realized by construction of the maximal degenerate irreducible representations of
the groupSO(p, q) in the space of the infinitely differentiable homogeneous functions
on a coneY : [y, y] = y2

1 + · · · + y2
p − y2

p+1 − · · · − y2
p+q = 0. The case of the non-

degenerate representations of the groupSO(1, q) are also considered. For a generalization
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of the construction of the plane waves for the case SSX ≡ SO(p, q)/SO(p) ⊗ SO(q),
p > 2, 3, . . . , we consider the matrix realization of the SS given by Cartan and we present
the formula of the irreducible representations (principal series) of the groupSO(p, q) in
the space of infinitely differentiable homogeneous vector functionsF(yi) on a coneYi
(see section 3) with values in the representation space of the stability (little) subgroups
SO(p − i, q − i), i = 1, . . . , p.

There exists a number of exact results about the complete systems of quantum
commuting observables (quantum integrals of motion), wavefunctions, spectra and so
on. The paper ‘Quantum integrable systems related to Lie algebra’ by Olshanetsky and
Perelomov [4] presents the results obtained in these subjects from a general point of view.
The dynamics of some of these systems is closely related to free motion in the SS. In
the case of the Riemannian SS the distance between two points is real, but in the case
of pseudo-Riemannian SS the distance is piecewise defined, it has real and imaginary
parts. In other words, all geodesic curves in the former case have non-compact closures
and in the latter case all geodesic curves have non-compact and compact closures. This
is the reason why the quantum systems related to Riemannian SS have only continuous
spectra of scattering states and the quantum systems related to pseudo-Riemannian SS
have continuous and discrete spectra. For the case of the quantum dynamical systems
related to pseudo-Riemannian SS, see [5]. The review ‘Harmonic analysis and propagators
on homogenous spaces’ by Comporesi [6] presents the results on the Green function on
Riemannian SS.

The paper is organized as follows. In section 2 for completeness and to fix the notation
we construct the plane waves on SS of rank 1 and give the well known results on the
orthogonality, completeness conditions and addition theorem for these plane waves. Here
we also construct the vector plane waves on SS and give the orthogonality and completeness
conditions only for the case of the Lorentz groupSO(1, 3). In this section we give the
definition of theS-matrix through the matrix elements of the intertwining operator and
Harish–Chandra’sc-functions. In section 3 the main results on the construction of the plane
waves on SS with rankp > 1 are presented. Using the Cartan realization of the SSX of rank
p we define the matrix realizations of the coneY from the SSX by the asymptotic method.
Here we give a realization of the irreducible representations (principal series) of the group
G = SO(p, q). This realization is equivalent to the induced representation method, where
the Iwasawa decompositionsG = KAN is used. Using the analysis of the intertwining
operators of the maximal degenerate representations of the groupSO(p, q) provided in
[7], we calculate Harish–Chandrac-functions and give the orthogonality and completeness
conditions for the plane waves on SSX. Section 4 is devoted to Green functions on SS. We
give in appendix A the scalar products in the invariant subspaces of the maximal degenerate
irreducible representations of the groupSO(p, q) and in appendix B some formulae which
have been used in calculations of the Green functions.

2. Plane waves on SS of rank 1 of the groupSO(p, q)

In this section we construct plane waves on SS defined by quadratic forms in the space
Rp,q .

2.1. Plane waves on the two-sheeted hyperboloidX:[x, x]=x2
0−x2

1 − · · · − x2
q=1, x0 > 0

Firstly, we construct the plane waves for the case of the maximal degenerate representations
of the groupSO(1, q) for simplicity. The irreducible representations of the groupSO(1, q)
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can be constructed in the spaceDσ of infinitely differentiable homogeneous functionsF(y)
with homogeneity degreeσ on a coneY :[y, y] = y2

0 − y2
1 − · · · − y2

q = 0 y0 > 0 [8]:

F(ay) = aσF (y) a > 0, y ∈ Y. (2.1)

The representation

Tσ (g)F (y) = F(yg) g ∈ SO(1, q) (2.2)

can be realized in the space of infinitely differentiable functions on intersections of the cone,
for example on the sphereSq−1 = SO(q)/SO(q − 1):

Tσ (g)f (s) = (sg)σ0f (sg) g ∈ SO(1, q) (2.3)

wheres = y|y0=1 = (1, ξ), y = eas, [ξ, ξ ] = 1.
The compact realization of the representation given by equation (2.3) is compulsory,

because the stabilizer subgroup of the hyperboloidX is compact. Fromy ′ = yg we have

(sg)0 = eα
′−α (sg) = (sg)/(sg)0 = (1, ξg). (2.4)

The unitary representationTσ (g) with respect to the scalar product

(f1, f2)σ =
∫
f1(s)f2(s) ds (2.5)

is defined byσ = −(q − 1)/2 + iρ, ρ ∈ [0,∞) (principal series). Here ds is the
invariant volume on the sphereSq−1. Indeed, from the relations dy = dy ′ : e(q−1)α dα ds =
e(q−1)α′ dα′ ds ′ and eα

′ = (sg)0eα we have

ds = (sg)q−1
0 dsg = (sg)q−1

0 ds ′. (2.6)

It follows that the invariance condition of the scalar product(f1, f2) under representation
(2.3) isσ + σ̄ + q − 1= 0.

The representationTσ (g) is also invariant with respect to the scalar product

(f1, f2)σ =
∫
sq−1

∫
sq−1

[s(1), s(2)]−σ−q+1f1(s
(1))f2(s

(2)) ds(1) ds(2) (2.7)

where−q + 1 < σ < 0 (complementary series) orσ is a non-negative integerσ = 1 =
0, 1, 2 . . . (discrete series). The representationsTσ (g) andT−σ−q+1(g), g ∈ SO(1, q), are
equivalent whenσ is not an integer and partially equivalent whenσ is an integer. The
orthonormal basis functions on the sphereSq−1 are the matrix elementsD{l}(k), k ∈ SO(q),
of the representations of the groupSO(q) with conditions

D{l}(rk) = D{l}(k) k ∈ SO(q), r ∈ SO(q − 1). (2.8)

Here {l} is the set of numbers which define the irreducible representations of the group
SO(q). Note that this realization of the representation coincides with the induced
representation method where the Iwasawa decompositionG = NAK of the groupSO(1, q)

is used. Indeed the stability subgroup of the fixed point
◦
y = (1, 0, . . . ,0, 1) of the cone

[y, y] = 0, y0 > 0 isNM with M = SO(q−1) being the centralizer ofA in K. Hence the
coneY is defined as the factor spaceY = G/NM. This definition of the coneY is given
for an abstract groupG.

The restriction of the representationTσ (g) on the subgroupSO(q) has the form

Tσ (k0)D
{l}(k) = D{l}(kk0) k0 ∈ SO(q). (2.9)
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Hence the representation spaceDσ has the invariant vector|0k〉 (defined by{l} = 0) with
respect to the representationTσ (k), k ∈ SO(q). The spherical functions of the representation
Tσ (g) are defined by the formula

tσ0k;{l}(g) = 〈0k|Tσ (g)D{l}(h(ξ))〉 =
∫
Sq−1

(sg)σ0D
{l}(h(ξg)) dξ (2.10)

wherek = rh(ξ), kg = kg = rgh(ξg) and dξ is the invariant volume on a sphereSq−1.
Using the decompositiong = kgx of the elementsg ∈ SO(1, q) related to the

hyperboloidX:[x, x] = x2
0−x2

1−· · ·−x2
q = 1, x0 > 0: x = ◦xgx ,

◦
xk = ◦x,

◦
x = (1, 0, . . . ,0)

we also have

tσ0k;{l}(gx) = 〈T−q−1−σ (g−1
x )1|D{l}(h(ξ))〉 =

∫
(sg−1

x )
σ
0D
{l}(h(ξ)) dξ. (2.11)

Since(sg−1
x )0 = [

◦
x, sg−1

x ] = [
◦
xgx, s] = [x, s], we obtain

tσ0k;{l}(gx) =
∫

[x, s]σD{l}(h(ξ)) dξ. (2.12)

The matrix elementstσ0k;{l}(gx) define the basis functions on the hyperboloid [x, x] = 1,
x0 > 0. The functions [x, s]σ are called plane waves on this hyperboloid. The Laplace–
Beltrami operator1LB on the hyperboloid is the Casimir operator of the quasi-regular
representation:

T (g)F (x) = F(xg). (2.13)

Therefore the matrix elementstσ0k;{l}(gx) satisfy the equation

1LB t
σ
0k;{l}(gx) = −σ(σ + q − 1)tσ0k;{l}(gx). (2.14)

Hence we have

1LB[x, s]σ = −σ(σ + q − 1)[x, s]σ . (2.15)

The plane waves [x, s]σ present the simplest realization of the solution of the eigenfunction
problem for the Laplace–Beltrami operator on the hyperboloid. To define the orthogonality
and completeness conditions of the functions [x, s]σ we consider zonal spherical functions

tσ0k;0k (g) = tσ0k;0k (a(α)) =
∫
Sq−1

[x, s]σ dξ

= 0(q/2)

0((q − 1)/2)

∫ π

0
(coshα − sinhα cosθ)σ sinq−2 θ dθ. (2.16)

Here we used the Cartan decompositiong = kak′, g ∈ SO(1, q); in other words, the
spherical coordinate systemx0 = coshα, x̄ = sinhαη̄, [η̄, η̄] = 1 on hyperboloidX, and
the invariance of the integration over the sphereSq−1. The zonal spherical functions are
eigenfunctions of the radial part of the Laplace–Beltrami operator:(

d2

dα2
+ (q − 1) cothα

d

dα

)
tσ0k;0k (α) = σ(σ + q − 1)tσ0k;0k (α). (2.17)

The substitutiontσ0k;0k (α) = (sinhα)(q−1)/2ψ(α) reduces equation (2.16) to the Schrödinger
equation with potential

V = [(q/2− 1)2− 1/4] sinh−2 α. (2.18)

Therefore quantum systems related with the Laplace–Beltrami operator on the hyperboloid
[x, x] = 1, x0 > 0, have only scattering states. Hence, plane waves [x, s]σ , σ =
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−(q − 1)/2+ iρ, 0 6 ρ < ∞, are complete, orthogonal basis functions on hyperboloids
with a following completeness and orthogonality conditions:

(2π)−q
∫ ∞

0

dρ

|c(ρ)|2
∫
Sq−1

dξ [x, s]σ [x ′, s]σ̄ = δ(x − x ′)

(2π)−q
∫

dx[x, s]σ [x, s ′]σ̄ = |c(ρ)|2δ(ρ − ρ ′)δ(s − s ′). (2.19)

Here dx is an invariant element on the hyperboloid,c(σ ) is the Harish–Chandrac-function
which is defined by an asymptotic formula. From equation (2.16) we have

dσ0k;0k (α) ≈α→∞ c(σ )e
((q−1)/2iρ)α + c(σ )e((q−1)/2iρ)α

where

c(σ ) = 0(q/2)√
π0(q/2− 1/2)

∫ π

0
(1− cosθ)σ sinq−2 θ dθ = 0(q/2)0(−σ − (q − 1)/2)√

π2σ+10(−σ) .

(2.20)

The asymptotic expression of the plane wave [x, s]σ−q−1 when α → ∞ defines the
kernel of the intertwining operator

ATσ (g) = T−q+1−σ (g)A (2.21)

and

AD{l}(h(ξ)) =
∫
Sq−1

[s, s ′]−q+1−σD{l}(h(ξ ′)) dξ ′ = Al(σ )D{l}(h(ξ)). (2.22)

The S-matrix of the quantum system with potential

V = [l(l + q − 2)+ (q/2− 1)2− 1/4] sinh−2 α (2.23)

and energyE = ρ2 > 0 is given by the formula

Sl(E) = Al(σ )

Al(σ )
σ = −q − 1

2
+ i
√
E. (2.24)

It is clear that for the states withl = 0 we have

S0(E) = c(σ )

c(σ )
. (2.25)

The addition theorem for the plane waves follows from the group relations

tσ0k;0k (gx1g
−1
x2
) =

∑
{l}
tσ0k;{l}(gx1)t

σ
{l};0k (g

−1
x2
) =

∑
{l}
tσ0k;{l}(gx1)t

σ
0k;{l}(gx2). (2.26)

Using the completeness of the basic functions on the sphereSq−1 we get the addition
theorem for plane waves on the hyperboloid:

(2π)−q
∫
Sq−1

ds[x1, s]
σ [x2, s]

σ̄ =
∫
Sq−1

ds[
◦
xgx1g

−1
x2
, s]σ . (2.27)

The equation [x, y] = constant(y = eαs) defines the horisphere in the Lobachevsky space
SO(1, q)/SO(q), i.e. a sphere with origin at infinity which is on a coneY . Hence, this
horisphere is an analogue to the Euclidean plane. Also, if we introduce the dimensional
valuec, the light velocity, then the Lobachevsky space reduces to the Euclidean one and the
Laplace–Beltrami operator to the square of the momentum operator, and the plane waves
[x, s](q−1)/2+iρ reduce to the ordinary plane waves eipr (wherep is the momentum andr
the coordinate of theq-dimensional Euclidean space), when the velocityc tends to infinity.
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Now we consider non-degenerate representations of the groupSO(1, q) to construct
vector plane waves on SSX. The non-degenerate irreducible representations of the group
SO(1, q) are constructed in the space of infinitely differentiable vector functionsF(y) on
a cone [y, y] = 0, y0 > 0 with values in the representation space of the stability (little)

subgroupSO(q − 1) of the point
◦
y = (1, 0, . . . ,0, 1) on the cone. This representation can

be constructed in the space of infinitely differentiable vector functionsf (s) on a sphere
Sq−1. The orthonormal basis functions on the sphereSq−1 are the matrix elementsD{l}(k),
k ∈ SO(q), of the representations of the groupSO(q) with covariant conditions

D{l}(rk) = D{l′}(r)D{l}(k) k ∈ SO(q), r ∈ SO(q − 1). (2.28)

HereD{l
′}(r) are the matrix elements of the representations of the groupSO(q − 1).

The representation formula has the form

Tχ(σ,{l})(g)D{l}(k) = (sg)σ0D{l}(kg) g ∈ SO(1, q), k ∈ SO(q). (2.29)

For the restriction on the maximal compact subgroupSO(q) we have

Tχ(σ,{l})(k0)D
{l}(k) = D{l}(kk0) k, k0 ∈ SO(q). (2.30)

From equation (2.23) we obtain

t
χ

{l′};{l}(g) =
∫
(sg)σ0D

{l′}(k)D{l}(kg) dk. (2.31)

Hence

t
χ

{l′};{l}(gx) =
∫

[x, s]σD{l′}(kg−1
x
)D{l}(k) dk. (2.32)

So, plane waves on the hyperboloid for the case of the non-degenerate representations have
the form

[x, s]σD{l′}(kg−1
x
). (2.33)

We demonstrate the calculation of thec[χ(σ, {l})] functions for the case of the Lorentz
groupSO(1, 3). In this case representationsTχ(g), g ∈ SO(1, 3), χ = (σ, ν), are defined by
σ = −1+ iρ, ρ ∈ [0,∞), and by the representationTν(k), k ∈ SO(2), ν = 0,±1/2,±1, . . .
of the stability subgroupSO(2). The basis functions on the sphereS2 are the orthonormal
WignerD-functions:

D
(J)
νλ (0, θ, ϕ) = d(J )νλ (θ)e

iλϕ. (2.34)

The integral representations of the matrix element of the representationTχ(a(α)), a ∈
SO(1, 1) have the form

t
χ

sλ;J (a(α)) = (2π)2
∫ π

0
(coshα − sinhα cosθ)σ dJνλ(θa)d

(s)
νλ (θ) sinθ dθ. (2.35)

Here

cosθa = sinhα + coshα cosθ

coshα + sinhα cosθ
ϕa = ϕ.

It follows that cosθa → 1 whenα →∞. Becausedσνλ(θ = 0) = δνλ from equation (2.35)
we obtain

t
χ

sλ;J (α) =α→∞(2π)
2eσαδνλ

∫ π

0
(1− cosθ)σ d(s)νλ (θ) sinθ dθ. (2.36)
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The |c(χ)|2 functions depend only on the weight of the representation. Puttings = ν in
equation (2.34) we have

|c(χ)|2 =
((

ρ

2

)2

+ ν2

)−1

(2.37)

which is the Plancherel measure in the representation space of the Lorentz group. So the
orthogonality and completeness conditions for the vector plane waves

[x, s]σD(s)
νλ (kg−1

x
) (2.38)

on the hyperboloid [x, x] = 1, x0 > 0, have the form

1

(2π)4

s∑
λ=−s

∫
[x,x]=1

[x, s]σD(s)
νλ (kg−1

x
)[x, s ′]σ

′
D
(s ′)
ν ′λ (kg−1

x
) dx = δνν ′δ(ρ − ρ ′)δ(s − s ′)

(ρ/2)2+ ν2
(2.39)

and

1

(2π)4

s∑
ν=−s

∫ ∞
0

∫
S2

[x, s]σD(s)
νλ (kg−1

x
)[x ′, s]σ̄D(s)

νλ′(kg−1
x
)((ρ/2)2+ ν2) dρ ds = δλλ′δ(x − x ′).

The expansion of the amplitude of the one-particle helicity stateFsλ(p) with mass
m2 = E2 − (p)2 and helicity λ by this vector plane wave have been obtained in [9].
The generalization of the Gelfand–Graev integral transformation in Lobachevsky space for
a non-degenerate representation was obtained in [10].

2.2. Plane waves on the one-sheeted hyperboloidZ:[z, z] = z2
0 − z2

1 − · · · − z2
q = −1

The plane waves on the hyperboloidZ:[z, z] = −1 are defined by the method of analytical
continuation from the plane waves on hyperboloidX [11]. Noting that the transition
x → z ∈ Z can be obtained by oneα → α ± iπ/2 in the spherical coordinate system,
we have

[x, s]σ → ([z, s] ± i0)σ · e±iπσ/2. (2.40)

Correspondingly the potential (2.18) is replaced by

V = −[(q/2− 1)2− 1/4] cosh−2 α. (2.41)

Therefore quantum systems related with the Laplace–Beltrami operator on the hyperboloid
Z have scattering and bound states. It is convenient, instead of having two independent
homogenous generalized functions (distributions)(t ± io)σ , to consider the generalized
functions|t |σ signε t , ε = 0, 1, using the relations

2 cos
πσ

2
|t |σ = e−iπσ/2(t + i0)σ + eiπσ/2(t − i0)σ (2.42)

and

2i sin
πσ

2
|t |σsignt = −e−iπσ/2(t + i0)σ + eiπσ/2(t − i0)σ . (2.43)

Thus we define the plane waves on the hyperboloidZ as

|[z, s]|σε ≡ cosπ(σ + ε)/2|[z, s]|σ
ε

sign[z, s] ε = 0, 1 (2.44)

whereσ = −(q − 1)/2+ iρ, 0< ρ <∞, for scattering states and

|[z, s]|−l−q−+1
ε ≡ Lim

σ→−l−q+1
cosπ(σ + ε)/2|]z, s]|σ

ε

sign[z, s] (2.45)

for discrete states.
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Note that the generalized function|t |σ of one variable has a simple pole atσ = −2m−1
with residue

Res|t |σ
σ=−2m−1

= [2δ2m(t)]

0(2m+ 1)
. (2.46)

However, if σ = −2m the generalized function|t |σ is regular atσ = −2m and takes the
value t−2m at this point. Hence we have

Lim cos
σ→−2m−1

πσ

2
|[z, s]|σ = (−1)m

π

0(2m+ 1)
δ2m([z, s])

Lim2i sin
σ→−2m−1

πσ

2
|[z, s]|σsign[z, s] = 2i(−1)m+1[z, s]−2m−1

Lim cos
σ→−2m

πσ

2
|[z, s]|σ = (−1)m[z, s]−2m. (2.47)

The orthogonality condition for plane waves on the hyperboloidZ has the form

(2π)−q
∫

dz[z, s]σε [z, s ′]−σ
′−q+1

ε′ = c(σ )c(−σ − q + 1)δ(σ − σ ′)δ(s − s ′)δεε′ . (2.48)

For the scattering states, Harish–Chandra’sc(σ )-function is the same as in equation (2.20),
but for the discrete states relation (2.48) is understood as a limit case whenσ →−l−q−1.
The completeness condition has the form∑
g=0,1

∫ ∞
0

dρ/|c(ρ)|2
∫
sq−1

ds[z, s](−(q−1)/2+(iρ)
ε [z′, s](−(q−1)/2+iρ)

ε

+
∑
g=0,1

∫
γ

dσ/|c(σ )c(−q + 1− σ)|
∫
sq−1

ds[z, s]σε [z′, s]−q+1−σ
ε

= (2π)qδ(z − z′) (2.49)

where the contourγ encloses the simple poles of the function 1/c(σ )

2.3. Plane waves on the hyperboloidZ±:[z, z] = z2
1 + · · · + z2

p − z2
p+1− · · · − z2

p+q = ±1

Now we construct the plane waves on the hyperboloidsZ±:(z2
1+· · ·+z2

p−z2
p+1−· · ·−z2

p+q =
±1, z = (z1, . . . , zp) ∈ Z±, of the groupSO(p, q), 1 < p < q. In order to do this we
consider the maximal degenerate representation of the groupSO(p, q) in the spaceDχ ,
χ = (σ, ε), of infinitely differentiable homogenous functionsF(y) with homogeneity degree
σ and parityε on a coneY (y2

1 + · · · + y2
p − y2

p+1− · · · − y2
p+q = 0, y = (y1, . . . , yp) ∈ Y )

F (ay) = |a|σ
ε

signaF(y) ε = 0, 1.

The representation

Tχ(g)F (y) = F(yg) χ = (σ, ε) g ∈ SO(p, q) (2.50)

can be realized in the space of infinitely differentiable functions on intersections of the cone
Y with the planey1 = 1:y = dp, p = y|y=1, p = (1, η), η = (η1, . . . , ηp−1ηp, . . . , ηp+q−1),
[η, η] = −1, η ∈ Z. From equation (2.50) we have

Tχ(g)f (p) = |(pg)1|σ
ε

sign(pg)1f (pg) g ∈ SO(p, q). (2.51)

Here we usedd ′/d = (pg)1, pg = (pg)/(pg1), which follow fromy ′ = yg. The expression
(pg)1 can be rewritten in the form

(pg)1 = ◦z, pg]
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where
◦
z = (1, 0, . . .0;0. . .0) is a fixed point of the hyperboloidZ+. Then forg ≡ g−1

z0

wheregz is defined by relationz = ◦zgz we have

(pg−1
z )1 = [z, p].

The non-compact realization of the representation given by equation (2.51) is compulsory,
because the stabilizer subgroup of the hyperboloidZ+ is non-compact. The complete basis
functions on the(p + q − 1)-dimensional hyperboloidZ+ are the matrix elementstχ (hg)
of the representation of the groupSO(p, q) with conditions

tχ (hg) = tχ (g) h ∈ H H ≡ SO(p − 1, q) g ∈ SO(p, q). (2.52)

Let 1 be anH invariant dual vector of the representation space, then we have

t
χ

0H ;χ ′(gz) = 〈T−p−q+2−σ,ε(g−1
z )1/D

χ ′(h(η))〉 =
∫
|[z, p]|−p−q+2−σ ε

sign[z, p]Dχ ′(gη) dη

(2.53)

whereη = ◦ηgη, ◦η = (0, . . . ,0, 1), is the vector of the(p+ q − 2)-dimensional hyperboloid
Z−, dη is an invariant volume element onZ−. Hence, to evaluate the basis functions on the
(p + q − 1)-dimensional hyperboloidZ+, we need the basis functions on the(p + q − 2)-
dimensional hyperboloidZ−. It can be done step by step. It is convenient to evaluate the
matrix elements of the representationsTχ(g), g ∈ SO(p, q), in the mixed basis. For this
we consider the realization of the representation (2.44) in the space of the functions on a
compact sectionr2 = y2

1+· · ·+y2
p = y2

p+1+· · ·+y2
p+q = 1 of the coneY . That isy = rs,

r > 0, s = (ξ (p), ξ (q)), ξ (p) ∈ Sp−1, ξ (q) ∈ Sq−1, s ∈ Sp−1× Sq−1. Then we have

Tχ(g)ϕ(s) = (rg/r)σϕ(sg), χ = (σ, ε) whereϕ(−s) = (−1)εϕ(s). (2.54)

Using the relations

f (p) =
(
r

|d|
)σ ε

signdψ(s) [x, p] = r

d
[x, s] dη =

( r
d

)p+q−2
ds (2.55)

and replacing the basis functions on hyperboloidZ− by the basis functions on sections
Sp−1× Sq−1 in equation (2.53) we have

tx0H ;{lp};{lq }(gz) =
∫
Sp−1

∫
Sq−1
|[z, s]|−p−q+2−σ ε

sin[z, s] ×D{lp}(ξ (p))D{lq }(ξ (q)) dξ (p) dξ (q).

(2.56)

The matrix elementstx0H ;{lp};{lq }(gz) are the basis functions on the(p + q − 1)-dimensional
hyperboloidZ+ given in the bispherical coordinate system and satisfy the equation

1LB t
x
0H ;{lp};{lq }(gz) = −σ(σ + p + q − 2)tx0H ;{lp};{lq }(gz). (2.57)

Hence for the plane waves [z, s]σ,ε ≡ |[z, s]|σsignε[z, s] we have

1LB[z, s]σ,ε = −σ(σ + p + q − 2)[z, s]σ,ε.

To define the orthogonality and completeness condition of the plane waves [z, s]σ,ε we
consider the ‘zonal’ spherical function

tx0H ;0k (g) ≡ tx0H ;0k (α) =
∫
Sp−1Sq−1

[z, s]σ,0 ds = 0(q/2)0(p/2)

0(q − 1/2)0(p − 1/2)

×
∫ π

0

∫ π

0
|coshα cosω − sinhα cosθ |σ x sinp−2ω sinq−2 θ dω dθ. (2.58)

Here we used the bispherical coordinate system on the hyperboloid

Z+: z = (chαξ(p), shαξ(q)) ξ (p) ∈ Sp−1, ξ (q) ∈ Sq−1
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and the invariance of the integration over the spheresSp−1 andSq−1. The ‘zonal’ spherical
functions are eigenfunctions of the radial part of the Laplace–Beltrami operator given by[

1

sinhq−1 α coshp−1 α

d

dα
sinhq−1 α coshp−1 α

d

dα

]
t
(σ,0)
0k;0H (α) = σ(σ + p + q − 2)t (σ,0)0k;0H (α).

(2.59)

The substitution

t
(σ,0)
0k;0H (α) = (sinhα)−(q−1)/2(coshα)−(p−1)/2ψσ (α) (2.60)

reduces equation (2.59) to the Schrödinger equation with potential

V = (q − 1)(q − 3)/4

sinh2 α
− (p − 1)(p − 3)/4

cosh2 α
. (2.61)

The scattering and bound states of this quantum system are defined by the principal (when
σ = −(p+ q−2)/2+ iρ, 0< ρ <∞) and discrete series (whenσ = n, n = 0, 1, 2 . . .) of
the irreducible unitary representation of the groupSO(p, q). In the study of the irreducible
representations of the groupSO(p, q) it is convenient to work with the compact realization
of the representation (2.50) as was done in [7, 12, 13].

It follows from equation (2.58) that Harish–Chandra’sc-function is given by the formula

Cp,q(σ ) = 0(q/2)0(p/2)

0(q − 1/2)0(p − 1/2)

∫ π

0

∫ π

0
| cosω − cosθ |σ sinp−2ω sinq−2 θ dω dθ. (2.62)

This integral was evaluated in [7] and we have (see appendix A)

cp,q(σ ) = 0(p/2)0(q/2)0(−σ − (p + q − 2)/2)0((−σ − q − p + 3)/2)√
π0(−σ/2)0((−σ − p + 2)/2)0((−σ − q + 2)/2)

. (2.63)

The orthogonality and completeness conditions for plane waves [z, s]σ,ε on hyperboloidZ+
are given by a formula similar to (2.48) where thec-function is replaced by thecp,q-function.

3. Plane waves on SS of rankp > 1 of the group SO(p, q)

For construction of the plane waves on SSX of rank p we use Cartan’s realization of
the symmetric homogeneous space, which is defined by the involutive automorphismσ :
σ 2 = 1. For the pseudo-orthogonal groupG = SO(p, q) for which gIgt = I , g ∈ G,
I = diag(1, . . . ,1,−1, . . . ,−1) is the metric’s tensor of the pseudo-Euclidean spaceRp,q ,
we define the involutive automorphism

σ(g) = IgI. (3.1)

Hence the elements of the maximal compact subgroupK = SO(p)⊗SO(q) are fixed under
this automorphism:σ(k) = k, k ∈ K. The homogeneous spaceX = G/K with motion
groupG and stabilizerK is called symmetric. An action of the groupG on SSX is defined
by

g ◦ x = x ′ = gxσ(g−1) x ∈ X, g ∈ G. (3.2)

The stabilizerK fixes the point
◦
x = 1-identity, and we have a realization of the spaceX in

the form

x = gxσ (g−1
x ) x ∈ X. (3.3)

The spaceX for the groupSO(p, q), p 6 q, is the SS of rankp. In the general case,
for any group, the rank of the homogeneous space is equal to the number of independent
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invariant differential operators on this space. For the Cartan decompositionG = KAK ′ of
the groupSO(p, q) we have

x = ka2k−1 k ∈ K, a ∈ A (3.4)

where a(α′, . . . , αp) = ∏p

J=1 a(α
j ) are hyperbolic rotations in planes(xj , xp+q+1−j ),

j = 1, p, k = diag(kpkq), kp ∈ SO(p), kq ∈ SO(q). The parametersα1, . . . , αp is
called Cartan coordinates on SS. The metric on the SS is induced by the metric in the
pseudo-Euclidean space of then⊗ n(n = p + q) matrices:

[x1, x2] = 1
2 tr(Ix1Ix

t
2). (3.5)

Hence the groupSO(p, q) defines the hyperboloid [x, x] = n/2 in this space. The metric
matrix in the SS is given by the formula

gij = 1

n
tr(I ẋti I ẋtj ) (3.6)

whereẋti = dx/dt , ti are the coordinates of the SS. The radial part of the Laplace–Beltrami
operator on SS is defined by the formula [14]

1√
g

p∑
j=1

∂

∂αj
√
g
∂

∂αj
(3.7)

where
√
g = √

det(gij ) =
∏p

i<j sinh(αi − αj ) sinh(αi + αj ) sinhq−p αi . Here the Cartan
coordinatesαi −αj , αi +αj , αi, i < j correspond to positive restricted roots of the algebra
of the groupSO(p, q) with multiplicity 1, 1 andq − p, respectively [14].

Using the action formula (3.2) of the transformation groupG on SSX we define the
quasi-regular representation of the groupSO(p, q) by the formula

T (g)f (x) = f (gxσ(g−1)) x ∈ X, g ∈ G. (3.8)

For decomposition of the quasi-regular representation into irreducible components we will
use the plane waves on SSX. In order to define the plane waves on (SS)X of rank p,
p 6 q, we construct the irreducible representations of the groupTχ1(g), χ1 = (σ1, χ2), g ∈
SO(p, q), in the spaceDχ1 of infinitely differentiable homogeneous vector functionsF(y)
on a coneY1 with homogeneity degreeσ1 whose values belong to the spaceDχ2 of the
representationTχ2(ğ), ğ ∈ SO(p − 1, q − 1). We define the coneY1 as asymptotic to the
SSX:

y1 = Lim
α1→∞

x = Lim
α1→∞

ka2k−1 = e2α1
k
◦
y1k
−1 y1 ∈ Y1, x ∈ X (3.9)

where

◦
y1 =


1 0 , . . . , 0 1
0 0 , . . . , 0 0
. . .

. . .
...

. . .
. . .

0 0 , . . . , 0 0
1 0 , . . . , 0 1

 .
We see that the cone (3.9) can be constructed as a homogeneous spaceY1 with the stationary

point
◦
y1, using the Iwasawa decompositionG = NAK:

y1 = kan ◦y1n
tak−1 = e2α1

k
◦
y1k
−1 y1,

◦
y1 ∈ Y1, k ∈ K, a ∈ A, n ∈ N (3.10)
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where the matrixn has the form

n =



1+ 1
2t

2 t1, . . . , tp−1, tp, . . . , tp+q−2 − 1
2t

2

−t1 t1
...

...

−tp−1 I tp−1

tp −tp
...

...

tp+q+2 −tp+q+2
1
2t

2 t1, . . . , tp−1, tp, . . . , tp+q−2 1− 1
2t

2


whereI is (p+q−2)× (p+q−2) unit matrix andt2 = t21 +· · ·+ t2p−1− t2p −· · ·− t2p+q−2.
The representation formula can be written in the form

Tχ1(g)f (s1) = e(α
1
g−α1)σ1tχ2(ğ(s1, g))f (gs1σ(g−1)) g ∈ SO(p, q) (3.11)

wherey1 = eαs1, s1 = k ◦y1k
−1, χ1 = (σ1, χ2), ğ ∈ SO(p−1, q−1) is the stability subgroup

of the point
◦
y1; f (s) is a vector function on the intersection of the cones1 = k ◦y1k

−1 with
values in the representation spaceDχ2 of the stability subgroup. The expressions e(α1

g−α1)σ1,
ğ(s1, g) are defined from the relations

y ′1 = gy1σ(g
−1) e−(α

1
g−α1)k′−1gk = nğ(s1, g). (3.12)

It follows that

e2(α1
g−α1) = 1

2 tr(gs1σ(g
−1)). (3.13)

The unitary representationTχ(g), g ∈ SO(p, q), with respect to the scalar product

(f1, f2) =
∫
〈f1(s)f2(s)〉 ds (3.14)

is defined byσ1 = −(p + q − 2)/2 + iρ1, ρ1 ∈ [0,∞) (principal series). Here〈|〉
denotes the inner product of the vector-valued functions in the spaceDχ2, ds = dξp dηq ,
ξp(ηq) − p(q) are dimensional unit vectors on the spheresSp = SO(p)/SO(p − 1),
Sq = SO(q)/SO(q − 1). Indeed, using ds = e(p+q−2)(αg−α) dsg which follows from the
relation dy ′ = dy, y ′ = gyσ(g−1) it is easy to verify that the invariant condition of the
scalar product with respect toTχ is σ1+σ1+p+q−2= 0. Let us put in (3.12) and (3.13)
the expression

g = Ig−1
x = Ia−1

x k
−1
x = axk−1

x I σ (g−1) = Ikxax. (3.15)

Then we obtain

e
2(α1

g
−1
x

−α1) = 1
2 tr(Ikxa

2
xk
−1
x I s1) = [x, s1] (3.16)

and

ğx n̆x ≡ ğ1(s1, g
−1
x )n̆1(s1, g

−1
x ) = e

−(α1
g
−1
x

−α1)
k′−1axk

−1
x Ikσ ((ğx n̆x)

−1)

≡ e
−(α1

g
−1
x

−α1)
k−1Ikxaxk

′. (3.17)

In the case of the groupSO(2, q) the zonal spherical functions on SSX is defined by the
formula

t
χ1
0k;0k (Igx) = 〈Tχ(Ig−1

x )1, 1〉 =
∫

[x, s1]σ1/2t
σ2
0k;0k (ğx) ds1 gx ∈ SO(2, q). (3.18)

Here we have used the equivalence of the representationsχ = (σ1, σ2), χ − (σ1, σ2).
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For the zonal spherical functionstσ2
0k;0k of the stability subgroupSO(1, q − 1) we have

a similar integral representation. Now we use the matrix realization of the coneY2:

y2 = ğ ◦y2σ(ğ
−1) ğ ∈ SO(p − 1, q − 1) (3.19)

where

◦
y2 =



0 0 , . . . , 0 0

0 1 , . . . , 1 0
...

...
. . .

...
...

0 1 , . . . , 1 0

0 0 , . . . , 0 0

 .

Consider the transformation

ğxnxy2σ(n
−1
x g
−1
x ) = y ′2+ n2 (3.20)

wherey ′2 = ğxy2σ(ğ
−1
x ) and the translation matrixn2 has the form (3.10) with the matrix

I equal to zero. Using (3.17) from (3.20) it follows that

e
2(α2

g
−1
x

−α2) = 1
2[x, s1]−1{[x, ks2k−1] − [x, s1] tr(n2)}. (3.21)

So we have

t
χ

0k;0k (gx) =
∫

[x, s1](σ1−σ2)/2{[x, ks2k−1] − [x, s1] tr(n2)}σ2 ds1 ds2. (3.22)

Repeating this procedure in the general case of the groupSO(p, q) we finally have

t
χ1

0k;0k (gx) =
∫

[x, s1]
∑p

j=1(−1)j+1σj {[x, k1s2k
−1
1 ] − [x, s1] tr(n2)} 1

2

∑2
j=2(−1)j+1σj

×{[x, kp−1 . . . k1spk
−1
1 . . . k−1

p−1] − [x, kp−2 . . . k1sp−1k
−1
1 . . . k−1

p−2]

× tr(np)}σp/2
p∏
i=1

dsi . (3.23)

Thus we obtain the plane waves on the SSX of rankp, which is the expression under the
integral sign in the integral representation (3.23)

exp

[ p∑
j=1

σ ′j ln{[x, s ′j ] − [x, s ′j−1] tr(nj−1)}
]

= [x, s1]
∑p

j=1 (−1)j+1σj {[x, k1s2k
−1
1 ] − [x, s1] tr(n2)} 1

2

∑p

j=2 (−1)j+1σj . . .

. . . {[x, kp−1 . . . k1spk
−1
1 . . . k−1

p−1] − [x, kp−2 . . . k1sp−1k
−1
1 . . . k−1

p−2]

× tr(np)}σp/2 (3.24)

where

s ′j = kj−1 . . . k1sj k
−1
1 . . . k−1

j−1 σ ′j =
p∑
n=j
(−1)n+2σn.

We point out that the plane waves (3.24) are defined through the traces of the matrices.
Hence one has a simpler form than plane waves based on the general theory of induced
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representation where the plane waves are defined through minors of the matricesG = NAK.
The plane waves are eigenfunctions of the Laplace–Beltrami operator on SSX:

1 exp

[ p∑
j=1

σ ′j ln{[x, s ′j ] − [x, s ′j−1] tr(nj−1)}
]
= (σ1(σ1+ p + q − 2)+ · · ·

· · · + σp(σp + q − p)) exp

[ p∑
j=1

σ ′j ln{[x, s ′j ] − [x, s ′j−1] tr(nj−1)}
]
. (3.25)

The zonal spherical functions8(α1, . . . , αp) = t
χ1

0k;0k (a) are eigenfunctions of the radial
part of the Laplace–Beltrami operator on SSX:

1√
g

p∑
j=1

∂

∂αj
√
g
∂

∂αj
8(α) = (σ1(σ1+ p + q − 2)+ · · · + σp(σp + q − p))8(α). (3.26)

Transformation8(α) = 4
√
g9(α) reduces the equation (3.26) to the one-dimensional

Schr̈odinger equation of thep-body system with potential

V =
∑
i<j

(
gαi−αj

sinh2(αi − αj )
+ gαi+αj

sinh2(αi + αj )
+ gα1

sinh2 αi

)
wheregαi−αj , gαi+αj , gαi > 0. (3.27)

Therefore the quantum systems related with the Laplace–Beltrami operator on SSX have
only scattering states: hence plane waves are complete and we have orthogonal basis
functions on SSX with the following completeness and orthogonality conditions:∫

exp

[ p∑
j=1

σ ′j ln{[x, s ′j ] − [x, s ′j−1] tr(nj−1)}
]

exp

[ p∑
j=1

σ ′j ln{[x ′, s ′j ] − [x ′, sj−1] tr(nj−1)}
]

×
∏

dsi

∏p

j=1 dρj

|c(σ1, . . . , σp)|2 = δ(x
′ − x)∫

exp

[ p∑
j=1

σ ′j ln{[x, s ′j ] − [x, s ′j−1] tr(nj−1)}
]

exp

[ p∑
j=1

σ̄ ′j ln{[x, s̄ ′j ] − [x, s̄ ′j−1] tr(nj−1)}
]

dx

= |c(σ1, . . . , σp)|2
∏

δ(ρj − ρ̄j )δ(sj − s̄j ). (3.28)

Harish–Chandra’sc(σ1, . . . , σp)-functions are represented in the form

c(σ1, . . . , σp) =
p∏
i=1

cp−i+1,p−i+1(σi) (3.29)

where the expression of thecp−i+1,q−i+1-functions(k = 1, . . . , p) are defined by the formula
(2.57) settingp → p − k + 1, q → q − k + 1. Indeed, the asymptotic expression of the
zonal spherical functions have the form

t
χ

0k;0k (g) ≈ cp,q exp

[(
−p + q − 2

2
+ iρ1

)
α1

]
+ c̄p,q exp

[(
−p + q − 2

2
− iρ1

)
α1

]
whenα1 tends to infinity,

t
χ

0k;0k (g) ≈ cp−1,q−1 exp

[(
−p + q − 4

2
+ iρ2

)
α2

]
+c̄p−1,q−1 exp

[(
−p + q − 4

2
− iρ1

)
α2

]
(3.30)

whenα2 tends to infinity and so on.
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Harish–Chandra’sc-functions for complex semisimple Lie groupsG were calculated by
Gindikin and Karpelevich [15]. As shown by Helgason the expression for thec-function in
the general case of a semisimple groupG can be represented as product of thec-functions
of the groupG with real rank 1 [16].

4. Green functions

It follows from the results of the previous section that the integrable quantum systems
considered above are related to the quantum free motion on SS. Namely, one-dimensional
n-body integrable systems are a result of the broken symmetry of the quantum free motion
on d-dimensional homogenous spaces. There exist many coordinate systems which reduce
to the separation of variables in the Laplace–Beltrami operator [17] but only for those that
are geodesics, which are related to one-parameter subgroups of the symmetry group, do there
exist simple transformations of the Laplace–Beltrami operator on SS to some Hamiltonians
of quantum systems. The quantum system depends on the way the symmetry is broken (see
[5]).

The arbitrary quantum motion on SS was considered in a number of works. An
exhaustive bibliography connected with this problem is presented in [6], where the quantum
dynamics on compact Lie groups and homogenous spaces is considered.

First we consider the decomposition of the quasi-regular representation

T (g)F (x) = F(xg) g ∈ SO(1, q) (4.1)

related to the hyperboloid [x, x] = 1, x0 > 0. This representation is unitary with respect to
the scalar product:

〈F1, F2〉 =
∫
F1(x)F2(x) dx (4.2)

where dx is an invariant volume on the hyperboloid. We define the Fourier components of
the functionsF(x):

A(s, ρ) =
∫
F(x)[x, s]−(q−1)/2+iρ dx. (4.3)

For the functionsFg(x) = F(xg) we have

A(s, ρ) =
∫
Fg(x)[x, s]

−(q−1)/2+iρ dx =
∫
F(x)[xg−1, s]−(q−1)/2+iρ dx

= (sg)−(q−1)/2+iρ
0 A(sg, ρ). (4.4)

Here we have used the relation

[xg−1, s]σ = (sg)σ0 [x, sg]σ (4.5)

and the invariance of the volume element dx = d(xg). Therefore the representation in
the space of the functionsA(s, ρ) is irreducible. Decompositions of the representation
equation (4.1) reduce to the Fourier expansion of the functionsF(x). Using the
orthogonality condition for the plane waves equation (2.19) we have

F(x) = 1

(2π)2

∫ ∞
0

∫
sq−1

A(s, ρ)[x, s]−(q−1)/2ρ ds
dρ

|c(ρ)|2 . (4.6)

The Green functions of the quantum system with HamiltonianH = −(1/2mr2)1LB satisfies
the equation (

− 1

2mr2
1LB − E

)
G(x1, x2) = δ(x1− x2). (4.7)
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As is seen from the completeness conditions for plane waves the Green functions on SS
X ≡ SO(1, q)/SO(q) can be expressed in the form

G(x1, x2) = 1

(2π)q

∫ ∞
0

∫
Sq−1

[x1, s]−(q−1)/2+iρ [x2, s]−(q−1)/2−iρ ds

[((q − 1)/2)2+ ρ2]/2mr2− E
dρ

|c(ρ)|2 . (4.8)

Having used the relations given by equation (4.5) it is easy to get the invariant condition

G(x1g, x2g) = G(x1, x2). (4.9)

Hence we have

G(x,
◦
x) = 1

(2π)q

∫ ∞
0

∫
sq−1

[x, s]−(q−1)/2−iρ ds

[((q − 1)/2)2+ ρ2]/2mr2− E2

dρ

|c(ρ)|2 (4.10)

where
◦
x = (1, 0, . . . ,0) is the fixed point. This representation for the Green functions also

follows from the addition theorem for the plane waves equation (2.20). So, the calculation
of the Green functions reduces to the calculation of the zonal spherical functions. Using
the known results [8]∫

Sq−1
[x, s]−(q−1)/2+iρ ds = 2(q−2)/20(q/2)

sinh(q−2)/2 α
P
(2−q)/2
−1/2−iρ(coshα) (4.11)

where coshα = [x,
◦
x] and P νσ (z) is an associated Legendre function of the first kind, we

get

G(x,
◦
x) = 1

2π

∫ ∞
0

(2π sinhα)(2−q)/2 dρ

[((q − 1)/2)2+ ρ2]/2mr2− E
×
∣∣∣∣0(iρ + (q − 1)/2)

0(iρ)

∣∣∣∣2P (2−q)/2−1/2−iρ(coshα). (4.12)

From this the energy-dependent Green function can be obtained in closed form:

G([x,
◦
x]) = me2π iε

π

( −1

2πr2 sinhα

)(q−2)/2

Q
(q−2)/2
−1/2−iν(coshα) (4.13)

whereε = 0(1/2) for q odd (even) andν =
√

2mr2E − ((d − 1)/2)2, Qµ
ν is a Legendre

function of the second kind (see appendix B). This result has been obtained in [18–20].
For the Green functions on the SSX SO(p, q)/SO(p)×SO(q) we have the following

integral representation:

G([x,
◦
x]) =

∫
t
χ1
0k;0k (gx)|

∏p

k=1 cp−k+1,q−k+1|−2

(σ1(σ1+ p + q − 2)+ · · · + σp(σp + q − p))/2mr2− E
p∏
j=1

dρj . (4.14)

Thus calculation of the Green functions in the general case reduces to the calculation
of the zonal spherical functionstχ1

0k;0k (gx). But this problem has been open up to
now. The calculation of the zonal spherical functions for the groupSU(p, q), p 6 q,
has been performed by Berezin and Karpelevich [21]. The plane waves on SSX ≡
SU(p, q)/S(U)(p) × U(q)) and integrable quantum systems related to this SSX will
be considered in a subsequent publication.

Acknowledgments

I am grateful to my assistant M Sezgin helping me in the preparation of this paper and I H
Duru, H Z Ahmedov and G A Kerimov for discussions. The support of this research from
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Appendix A. The maximal degenerate representations of the groupSO(p, q)

Here we give the scalar products in the invariant subspaces of the maximal degenerate
irreducible unitary representations of the groupSO(p, q).

We realise the representation (2.44) in the spaceDχ , χ = (σ, ε), of the infinitely
differentiable functionsf (s), s = (ξp, ξq), ξp ∈ Sp−1, ξq ∈ Sq−1, on the sphereSp−1×Sq−1

with given parityε : f (s) = (−1)εf (s). We have

Tχ(g)f (s) = eσ(αg−α)f (sg) (A.1)

with respect to the scalar product

(f1, f2)χ =
∫
Sp−1

∫
Sq−1

f1(s)f2(s) ds (A.2)

where ds is an invariant volume on the sphereSp−1× Sq−1 andσ = −(p+ q − 2)/2+ iρ,
06 ρ <∞ (principal series). It follows from that relation

ds = eσ(αg−α)(p+q−2) ds ′. (A.3)

The Hermitian functional

(f1, f2)χ = c
∫
Sp−1

∫
Sq−1
|[s(1), s(2)]|−σ−p−q+2f1(s(1))f2(s

(2)) ds(1) ds(2) (A.4)

is also invariant under representation (A.1).
In order to investigate positive definitions of(f1, f2)χ it is convenient to represent it in

canonical form. For this the calculation of the following integral is required:

γlp,lq =
1

b

∫ π

0

∫ π

0
| cosθ − cosω|−σ−p−q+2C

(p−2)/p
lp

(cosθ)C(q−2)/q
lq

(cosω)

× sinp−2 θ sinq−2ω dθ dω (A.5)

where

b =
√
0(p + lp − 2)0(q + lq − 2)0(p − 1)0(q − 1)

lp!lq !(2lp + p − 2)(2lq + q − 2)

2−p−q−8π

02((p − 2)/2)02((q − 2)/2)

andCpl (cosθ) are the Gegenbauer polynomials. From [7] we have

βlp,lq = γ χlp,lq
√

lp!0(p − 1)lq !0(q − 1)

0(lp + p − 2)0(lq + q − 2)(2lp + p − 2)(2lq + q − 2)

= {2σ+p+q−4(−1)lq 1
2[1+ (−1)ε+lp−lq ]0((p − 2)/2)0((q − 2)/2)

×0(−σ − p − q + 3)0(−σ − ((p + q)/2)+ 1)}{0((−σ/2)
+((lp + lq)/2))0((−σ − q + 2)/2)+ ((lp − lq)/2))0((−σ − p − q + 4)/2)

−((lp + lq)/2))0((−σ − p + 2)/2)− ((lp − lq)/2))}−1. (A.6)

It follows from (A.6) that the condition(f1, f2)χ > 0 or γ χlp,lq > 0 is fulfilled in the
following cases:

(1)
(a) (p + q)/2< σ 〈(−p − q + 4)/2 whenp + q even,ε = (p − q)/2;
(b) (1− p − q)/2< σ < (−p − q + 3)/2 whenp + q odd, ε = 0, 1.
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This is the complementary series. In this case we have

(f1, f2)χ =
∞∑

lp,lq=0

0(((σ + p + q − 2)/2)+ ((lp + lq)/2))0(((σ + p)/2)+ ((lp − lq)/2))
0((−σ/2)+ ((lp + lq)/2))0(((−σ − q + 2)/2)+ ((lp − lq)/2))

×
∑
K,M

a
(1)lp,lq
KM a

(2)lp,lq
KM

where a
(i)lp,lq
KM are generalized Fourier components of the functionsf i(s) on the sphere

Sp−1× Sq−1.
(2) −σ − p − q + 2= L > −(p + q − 2)/2
(a) lp > lq , lp − lq = L+ q + 2n, n = 0, 1, 2, . . ., if (−1)L+q = (−1)ε;
(b) lq > lq , lq − lp = L+ p + 2n, n = 0, 1, 2, . . ., if (−1)L+q = (−1)ε.
These are discrete series. In these cases we have
(a)

(f1, f2)χ=
∞∑

lp=L+q

lp−L−q∑
lq=0

[0((−L/2)+ ((lp + lq)/2))0(((−L− q + 2)/2)+ ((lp − lq)/2))]

×[0(((L+ p + q − 2)/2)+ ((lp + lq)/2))0(((L+ p/2)+ ((lp − lq)/2))]−1

×
∑
K,M

a
(1)lp,lq
KM a

(2)lp,lq
KM

(b)

(f1, f2)χ=
∞∑

lq=L+p

lq−L−p∑
lp=0

[0((−L/2)+ ((lp + lq)/2))0(((−L− p + 2)/2)+ ((lq − lp)/2))]

×[0(((L+p+q − 2)/2)+ ((lp + lq)/2))0(((L+ p)/2)+ ((lq − lp)/2))]−1

×
∑
K,M

a
(1)lp,lq
KM a

(2)lp,lq
KM .

Appendix B.

Here we give some formulae which have been used in the calculation of Green functions on
theq-dimensional hyperboloid [x, x] = 1, x0 > 0. For evenq = 2m, m an integer, we have∣∣∣∣0(iρ + (q − 1)/2)

0(iρ)

∣∣∣∣2P (2−q)/2−1/2−iρ(coshα) = (−1)m−1ρ tanhπρPm−1
−1/2−iρ(coshα). (B.1)

By the formula

Pmν (z) = (z2− 1)m/2
dm

dzm
Pν(z) (B.2)

from (4.12) we get

G(1,q)([x,
◦
x]) = mr2

π

(
− 1

2π

d

d coshα

)(d−2)/2

×
∫ ∞

0

ρ tanhπρ dρ

ρ2− [2mr2E − ((d − 1)/2)2]
P−1/2−iρ(coshα)

= mr2

π

(
− 1

2π

d

d coshα

)(d−2)/2

Q−1/2−iν(coshα) (B.3)

whereν =
√

2mr2E − ((d − 1)/2)2.
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We have used the integral∫ ∞
0

x tanhπx

x2+ a2
P−1/2−ix(coshα) dx = Q−1/2+a(coshα). (B.4)
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